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A test space is the set of outcome-sets associated with a collection of experiments.
This notion provides a simple mathematical framework for the study of probabilistic
theories—notably, quantum mechanics—in which one is faced with incommensurable
random quantities. In the case of quantum mechanics, the relevant test space, the set
of orthonormal bases of a Hilbert space, carries significant topological structure. This
paper inaugurates a general study of topological test spaces. Among other things, we
show that any topological test space with a compact space of outcomes is of finite
rank. We also generalize results of Meyer and Clifton-Kent by showing that, under
very weak assumptions, any second-countable topological test space contains a dense
semi-classical test space.
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1. INTRODUCTION

A test space in the sense of Foulis and Randall (1983) and Foulis et al. (1992,
1993), is a pair (X,A) where X is a non-empty set and A is a covering of X by
non-empty subsets.3 The intended interpretation is that each set E ∈ A represents
an exhaustive set of mutually exclusive possible outcomes, as of some experiment,
decision, physical process, or test. A state, or probability weight, on (X,A) is a
mapping ω : X → [0, 1] summing to 1 over each test.

Obviously, this framework subsumes discrete classical probability theory,
which deals with test spaces (E, {E}) having only a single test. It also accom-
modates quantum probability theory, as follows. Let H be a Hilbert space, let
S = S(H) be the unit sphere of H, and let F = F(H) denote the collection of all
frames, i.e., maximal pairwise orthogonal subsets of S. The test space (S,F) is
a model for the set of maximally informative, discrete quantum-mechanical ex-
periments. As long as dim(H) > 2, Gleason’s theorem (Gleason, 1957) tells us

1 I wish to dedicate this paper to the memory of Frank J. Hague III.
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that every state ω on (S,F) arises from a density operator W on H via the rule
ω(x) = 〈Wx, x〉 for all x ∈ S.

In this last example, the test space has a natural topological structure: S is
a metric space, and F can be topologized as well (in several ways). The purpose
of this paper is to provide a framework for the study of topological test spaces
generally. Section 2 develops basic properties of the Vietoris topology, which we
use heavily in the sequel. Section 3 considers topological test spaces in general, and
locally finite topological test spaces in particular. Section 4 addresses the problem
of topologizing the logic of an algebraic topological test space. In Section 5, we
generalize results of Meyer (1999) and Clifton and Kent (2000) by showing that
any second-countable topological test space satisfying a rather natural condition
contains a dense semi-classical subspace. The balance of this section collects
some essential background information concerning test spaces (see Wilce, 2000
for a detailed survey). Readers familiar with this material can proceed directly to
Section 2.

1.1. Events

Let (X,A) be a test space. Two outcomes x, y ∈ X are said to be orthogonal,
or mutually exclusive, if they are distinct and belong to a common test. In this
case, we write x ⊥ y. More generally, a set A ⊆ X is called an event for X if there
exists a test E ⊇ A. The set of events is denoted by E(X,A).

There is a natural orthogonality relation on E(X,A) extending that on X,
namely, A ⊥ B iff A ∩ B = ∅ and A ∪ B ∈ E(X,A). Every state ω on (X,A)
extends to a mapping ω : E(X,A) → [0, 1] given by ω(A) = ∑

x∈A ω(x). If
A ⊥ B, then ω(A ∪ B) = ω(A) + ω(B) for every probability weight ω. Two
events A and C are complementary—abbreviated AocC—if they partition a test,
and perspective if they are complementary to a common third event C. In this
case, we write A ∼ B. Note that if A and B are perspective, then for every state ω

on (X,A), ω(A) = 1 − ω(C) = ω(B).

1.2. Algebraic Test Spaces

We say that X is algebraic iff for all events A,B,C ∈ E(X,A),
A ∼ B and BocC ⇒ AocC. In this case, ∼ is an equivalence relation on E(X).
Moreover, if A ⊥ B and B ∼ C, then A ⊥ C as well, and A ∪ B ∼ A ∪ C.

Let �(X,A) = E(X,A)/ ∼, and write p(A) for the ∼-equivalence class of
an event A ∈ E(X). Then, � carries a well defined orthogonality relation, namely
p(A) ⊥ p(B) ⇔ A ⊥ B, and also a partial binary operation p(A) ⊕ p(B) =
p(A ∪ B), defined for orthogonal pairs. We may also define 0 := p(∅), 1 := p(E),
E ∈ A, and p(A)′ = p(C) where C is any event complementary to A.
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The structure (�,⊕,′ , 0, 1), called the logic of (X,A), satisfies the following
conditions:

(1) p ⊕ q = q ⊕ p and p ⊕ (q ⊕ r) = (p ⊕ q) ⊕ r4 ;
(2) p ⊕ p is defined only if p = 0;
(3) p ⊕ 0 = 0 ⊕ p = p;
(4) For every p ∈ �, there exists a unique element—namely, p′—

satisfying p ⊕ p′ = 1.
For the test space (S,F) of frames of a Hilbert space H, events are simply

orthonormal set of vectors in H, and two events are perspective iff they have the
same closed span. Hence, we can identify �(S,F) with the set of closed subspaces
of H, ⊕ coinciding with the usual orthogonal sum operation.

1.3. Orthoalgebras

Abstractly, a structure satisfying (1) through (4) above is called an orthoal-
gebra. It can be shown that every orthoalgebra arises canonically (though not
uniquely) as �(X,A) for an algebraic test space (X,A). Indeed, if L is an orthoal-
gebra, let XL = L \ {0} and let AL denote the set of finite subsets E = {e1, . . . , en}
of L \ 0 for which e1 ⊕ · · · ⊕ en exists and equals 1. Then, (XL,AL) is an algebraic
test space with logic canonically isomorphic to L.

Any orthoalgebra L carries a natural partial order, defined by setting p ≤ q iff
there exists some r ∈ L with p ⊥ r and p ⊕ r = q. With respect to this ordering,
the mapping p �→ p′ is an orthocomplementation.

Proposition 1.1. (Foulis et al., 1992) If L is an orthoalgebra, the following are
equivalent:

(a) L is orthocoherent, i.e., for all pairwise orthogonal elements
p, q, r ∈ L, p ⊕ q ⊕ r exists.

(b) p ⊕ q = p ∨ q for all p ⊥ q in L

(c) (L,≤,′ ) is an orthomodular poset

Note also that if (L,≤,′ ) is any orthoposet, the partial binary operation
of orthogonal join — that is, p ⊕ q = p ∨ q for p ≤ q ′—is cancellative iff
L is orthomodular, in which case, (L,⊕) is an orthoalgebra, the natural or-
der on which coincides with the given order on L (Wilce, 2000). Thus, ortho-
modular posets and orthomodular lattices can be regarded as essentially the
same things as orthocoherent orthoalgebras and lattice-ordered orthoalgebras,
respectively.

4 With one side defined if the other is.
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2. BACKGROUND ON THE VIETORIS TOPOLOGY

General references for this section are (Illanes and Nadler, 1999; Michael,
1951). If X is any topological space, let 2X denote the set of all closed subsets of
X. If A ⊆ X, let

[A] := {F ∈ 2X|F ∩ A �= ∅}.
Clearly, [A ∩ B] ⊆ [A] ∩ [B] and

⋃
i[Ai] = [

⋃
i Ai]. The Vietoris topology on 2X

is the coarsest topology in which [U ] is open if U ⊆ X is open and [F ] is closed
if F ⊆ X is closed.5 Thus, if U is open, so is (U ) := [Uc]c = {F ∈ 2X|F ⊆ U}.
Let B be any basis for the topology on X: then the collection of sets of the form

〈U1, . . . , Un〉 := [U1] ∩ · · · ∩ [Un] ∩
(

n⋃
i=1

Ui

)

with U1, . . . , Un in B, is a basis for the Vietoris topology on 2X. Note that
〈U1, . . . , Un〉 consists of all closed sets contained in

⋃n
i=1 Ui and meeting each

set Ui at least once.
If X is a compact metric space, then the Vietoris topology on 2X is just that in-

duced by the Hausdorff metric. Two classical results concerning the Vietoris topol-
ogy are Vietoris’ theorem: 2X is compact iff X is compact, and Michael’s theorem:
a (Vietoris) compact union of compact sets is compact.6

The operation ∪ : 2X × 2X → 2X is also Vietoris continuous, since

∪−1([U ]) = {(A,B)|A ∪ B ∈ [U ]} = ([U ] × 2X) ∪ (2X × [U ]),

which is open if U is open and closed if U is closed. In particular, for any fixed
closed set A, the mapping fA : 2X → 2X given by fA : B �→ A ∪ B is continuous.
Notice also that the mapping π : 2X × 2X → 2X×X given by π (A,B) = A × B

is continuous, as π−1([U × V ]) = [U ] × [V ] and π−1((U × V )) = (U ) × (V ).
Henceforth, we regard any collection A of closed subsets of a topological

space X as a subspace of 2X. In the special case in which A is a collection of
finite sets of uniformly bounded cardinality, say |E| < n for every E ∈ A, there
is a more direct approach to topologizing A that bears discussion. Let A

o ⊆ Xn

denote the space of ordered versions (x1, . . . , xn) of sets {x1, . . . , xn} ∈ A, with
the relative product topology. We can give A the quotient topology induced by the
natural surjection π : A

o → A that “forgets” the order. The following is doubtless
well known, but I include the short proof for completeness.

Proposition 2.1. Let X be Hausdorff and A, a collection of non-empty finite
subsets of X of cardinality ≤ n (with the Vietoris topology). Then, the canonical

5 In particular, ∅ is an isolated point of 2X . Many authors omit ∅ from 2X .
6 More precisely, if C is a compact subset of 2X with each C ∈ C compact, then

⋃
C∈C C is again

compact.
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surjection π : A
o → A is an open continuous map. Hence, the Vietoris topology

on A coincides with the quotient topology induced by π .

Proof: Let U1, . . . , Un be open subsets of X. Then, π ((U1 × · · · × Un) ∩ A
o) =

〈U1, . . . , Un〉 ∩ A, so π is open. Also

π−1(〈U1, . . . , Un〉 ∩ A) =
⋃
σ

(Uσ (1) × · · · × Uσ (n)) ∩ A
o,

where σ runs over all permutations of {1, 2, . . . , n}, so π is continuous. It follows
immediately that the quotient and Vietoris topologies on A coincide. �

3. TOPOLOGICAL TEST SPACES

We come now to the subject of this paper.

Definition 3.1. A topological test space is a test space (X,A) where X is a
Hausdorff space and the relation ⊥ is closed in X × X.

Example 3.1. (a) Let H be a Hilbert space. Let S be the unit sphere of H, in any
topology making the inner product continuous. Then, the test space (S,F) defined
above is a topological test space, since the orthogonality relation is closed in S2.
(b) Suppose that X is Hausdorff, that every E ∈ A is finite, and that (X,A) sup-
ports a set � of continuous probability weights that are ⊥-separating in the sense
that p �⊥ q iff ∃ω ∈ � with ω(p) + ω(q) > 1. Then, ⊥ is closed in X2, so again
(X,A) is a topological test space.
(c) Let L be any topological orthomodular lattice (Choe et al., 1994). The map-
ping φ : L2 → L2 given by φ(p, q) = (p, p ∧ q ′) is continuous, and ⊥= φ−1(�)
where � is the diagonal of L2. Since L is Hausdorff, � is closed, whence, so
is ⊥. Hence, the test space (L \ {0},AL) (as described in Section 1.3 above) is
topological.

The following Lemma collects some basic facts about topological test spaces
that will be used freely in the sequel.

Lemma 3.1. Let (X,A) be a topological test space. Then,
(a) Each point x ∈ X has an open neighborhood containing no

two orthogonal outcomes. (We shall call such a neighborhood
totally non-orthogonal.)

(b) For every set A ⊆ X, A⊥ is closed.
(c) Each pairwise orthogonal subset of X is discrete.
(d) Each pairwise orthogonal subset of X is closed.
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Proof:

(a) Let x ∈ X. Since (x, x) �∈⊥ and ⊥ is closed, we can find open sets V and W

about x with (V × W )∩ ⊥= ∅. Taking U = V ∩ W gives the advertised
result.

(b) Let y ∈ X \ x⊥. Then, (x, y) �∈⊥. Since the latter is closed, there exist
open sets U,V ⊆ X with (x, y) ∈ U × V and (U × V )∩ ⊥= ∅. Thus, no
element of V lies orthogonal to any element of U ; in particular, we have
y ∈ V ⊆ X \ x⊥. Thus, X \ x⊥ is open, i.e., x⊥ is closed. It now follows
that for any set A ⊆ X, the set A⊥ = ⋂

x∈A x⊥ is closed.
(c) Let D be pairwise orthogonal. Let x ∈ D: by part (b), X \ x⊥ is open,

whence, {x} = D ∩ (X \ x⊥) is relatively open in D. Thus, D is discrete.
(d) Now suppose D is pairwise orthogonal, and let z ∈ D: if z �∈ D, then

for every open neighborhood U of z, U ∩ D is infinite; hence, we can
find distinct elements x, y ∈ D ∩ U . Since D is pairwise orthogonal, this
tells us that (U × U )∩ ⊥�= ∅. But then (x, x) is a limit point of ⊥. Since
⊥ is closed, (x, x) ∈⊥, which is a contradiction. Thus, z ∈ D, i.e., D is
closed. �

It follows in particular that every test E ∈ A and every event A ∈ E(X,A)
is a closed, discrete subset of X. Hence, we may construe A and E(X,A) of as
subspaces of 2X in the Vietoris topology.

A test space (X,A) is locally finite iff each test E ∈ A is a finite set. We shall
say that a test space (X,A) is of rank n if n is the maximum cardinality of a test
in A. If all tests have cardinality equal to n, then (X,A) is n-uniform.

Theorem 3.1. Let (X,A) be a topological test space with X compact. Then, all
pairwise orthogonal subsets of X are finite, and of uniformly bounded size. In
particular, A is of finite rank.

Proof: By Part (a) of Lemma 3.1, every point x ∈ X is contained in some
totally non-orthogonal open set. Since X is compact, a finite number of these, say
U1, . . . , Un, cover X. A pairwise orthogonal set D ⊆ X can meet each Ui at most
once; hence, |D| ≤ n. �

For locally finite topological test spaces, the Vietoris topology on the space
of events has a particularly nice description. Suppose A is a finite event: By Part
(a) of Lemma 3.1, we can find for each x ∈ A a totally non-orthogonal open
neighborhood Ux . Since X is Hausdorff and A is finite, we can arrange for these
to be disjoint from one another. Consider now the Vietoris-open neighborhood
V = 〈Ux, x ∈ A〉 ∩ E of A in E : an event B belonging toV is contained in

⋃
x∈A Ux

and meets each Ux in at least one point; however, being pairwise orthogonal, B can
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meet each Ux at most once. Thus, B selects exactly one point from each of the
disjoint sets Ux (and hence, in particular, |B| = |A|). Note that, since the totally
non-orthogonal sets form a basis for the topology on X, open sets of the form just
described form a basis for the Vietoris topology on E .

As an immediate consequence of these remarks, we have the following:

Proposition 3.1. Let (X,A) be locally finite. Then, the set En of all events of a
given cardinality n is clopen in E(X,A).

A test space (X,A) is UDF (unital, dispersion-free) iff for ever x ∈ X there
exists a {0, 1}-valued state ω on (X,A) with ω(x) = 1. Let U1, . . . , Un be pairwise
disjoint totally non-orthogonal open sets, and let U = 〈U1, . . . , Un〉: then U can
be regarded as a UDF test space (each Ui selecting one outcome from each test
in U). The foregoing considerations thus have the further interesting consequence
that any locally finite topological test space is locally UDF. In particular, for such
test spaces, the existence or non-existence of dispersion-free states will depend
entirely on the global topological structure of the space.

If (X,A) is a topological test space, let A denote the (Vietoris) closure of
A in 2X. We are going to show that (X,A) is again a topological test space,
having in fact the same orthogonality relation as (X,A). If (X,A) is of finite rank,
moreover, (X,A) has the same states as (X,A).

Lemma 3.2. Let (X,A) be any topological test space, and let E ∈ A. Then, E

is pairwise orthogonal (with respect to the orthogonality induced by A).

Proof: Let x and y be two distinct points of E. Let U and V be disjoint neighbor-
hoods of x and y, respectively, and let (Eλ)λ∈	 be a net of closed sets in A converg-
ing to E in the Vietoris topology. Since E ∈ [U ] ∩ [V ], we can find λU,V ∈ 	 such
that Eλ ∈ [U ] ∩ [V ] for all λ ≥ λU,V . In particular, we can find xλU,V

∈ EλU,V
∩ U

and yλU,V
∈ EλU,V

∩ V . Since U and V are disjoint, xλU,V
and yλU,V

are distinct,
and hence—since they belong to a common test Eλ—orthogonal. This gives us a
net (xλU,V

, yλU,V
) in X × X converging to (x, y) and with (xλU,V

, yλU,V
) ∈⊥. Since

⊥ is closed, (x, y) ∈⊥, i.e., x ⊥ y. �

It follows that the orthogonality relation on X induced by A is the same as
that induced by A. In particular, (X,A) is again a topological test space.

Let Fn denote the set of non-empty finite subsets of X having n or fewer
elements.

Lemma 3.3. Let X be Hausdorff. Then, for every n,
(a) Fn is closed in 2X.
(b) If f : X → R is continuous, then so is the mapping f̂ : Fn → R

given by f̂ (A) := ∑
x∈A f (x).
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Proof:

(a) Let F be a closed set (finite or infinite) of cardinality greater than n. Let
x1, . . . , xn+1 be distinct elements of F , and let U1, . . . , Un be pairwise
disjoint open sets with xi ∈ Ui for each i = 1, . . . , n. Then, no closed set
in U := [U1] ∩ · · · ∩ [Un] has fewer than n + 1 points—i.e., U is an open
neighborhood of F disjoint from Fn. This shows that 2X \ Fn is open, i.e.,
Fn is closed.

(b) By proposition 1.1, Fn is the quotient space of Xn induced by the surjec-
tion q : (x1, . . . , xn) �→ {x1, . . . , xn}. The mapping f : Xn → R given by
(x1, . . . , xn) �→ ∑n

i=1 f (xi) is plainly continuous; hence, so is f̂ . �

Proposition 3.2. Let (X,A) be a rank-n (respectively, n-uniform) test space.
Then, (X,A) is also a rank-n (respectively, n-uniform) test space having the same
continuous states as (X,A).

Proof: If A is rank-n, then A ⊆ Fn. Since the latter is closed, A ⊆ Fn also. Note
that if A is n-uniform and E ∈ A, then any net Eλ → E is eventually in bijective
correspondence with E, by Proposition 3.1. Hence, (X,A) is also n-uniform.
Finally, every continuous state on (X,A) lifts to a continuous state on (X,A) by
Lemma 3.3 (b). �

4. THE LOGIC OF A TOPOLOGICAL TEST SPACE

In this section, we consider the logic � = �(X,A) of an algebraic test
space (X,A). We endow this with the quotient topology induced by the canonical
surjection p : E → � (where E = E(X,A) has, as usual, its Vietoris topology).
Our aim is to find conditions on (X,A) that will guarantee reasonable continuity
properties for the orthogonal sum operation and the orthocomplement. In this
connection, we advance the following:

Definition 4.1. A topological orthoalgebra is an orthoalgbra (L,⊥,⊕, 0, 1) in
which L is a topological space, the relation ⊥⊆ L2 is closed, and the mappings
⊕ :⊥→ L and ′ : L → L are continuous.

A detailed study of topological orthoalgebras can be found in (Wilce, 2005).
However, it is worth mentioning here that, while every topological orthomodular
lattice is a topological orthoalgebra, there exist lattice-ordered topological orthoal-
gebras in which the meet and join are discontinuous—e.g., the orthoalgebra L(H)
of closed subspaces of a Hilbert space, in its operator-norm topology.
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Lemma 4.1. Let (L,⊥,⊕, 0, 1) be a topological orthoalgebra. Then,
(a) The order relation ≤ is closed in L2.
(b) L is a Hausdorff space.

Proof: For (a), note that a ≤ b iff a ⊥ b′. Thus, ≤ = f −1(⊥) where f : L ×
L → L × L is the continuous mapping f (a, b) = (a, b′). Since ⊥ is closed, so
is ≤. The second statement now follows by standard arguments (cf. Nachbin,
1965). �

We now return to the question: when is the logic of a topological test space,
in the quotient topology, a topological orthoalgebra?

Lemma 4.2. Suppose E is closed in 2X. Then
(a) The orthogonality relation ⊥E on E is closed in E2.
(b) The mapping ∪ :⊥E→ E is continuous.

Proof: The mapping E2 → 2X given by (A,B) �→ A ∪ B is continuous; hence,
if E is closed in 2X, then so is the set C := {(A,B) ∈ E2|A ∪ B ∈ E} of com-
patible pairs of events. It will suffice to show that the set O := {(A,B) ∈
E |A ⊆ B⊥} is also closed, since ⊥= C ∩ O. But (A,B) ∈ O iff A × B ⊆⊥,
i.e., O = π−1((⊥)) ∩ E where π : 2X × 2X → 2X×X is the product mapping
(A,B) �→ A × B. As observed in Section 2, this mapping is continuous, and
since ⊥ is closed in 2X×X, so is (⊥) in 2X×X. Statement (b) follows immediately
from the Vietoris continuity of ∪. �

Remarks 4.1. The hypothesis that E be closed in 2X is not used in showing that
the relation O is closed. If (X,A) is coherent (Foulis et al., 1993), then O =⊥,
so in this case, the hypothesis can be avoided altogether. On the other hand, if
X is compact and A is closed, then E will also be compact and hence, closed.
(To see this, note that if X is compact then by Vietoris’ theorem, 2X is compact.
Hence, so is the closed set (E) = {A ∈ 2X|A ⊆ E} for each E ∈ A. The mapping
2X → 22X

given by E �→ (E) is easily seen to be continuous. Since A is closed,
hence compact, in 2X, it follows that {(E)|E ∈ A} is a compact subset of 22X

. By
Michael’s theorem, E = ⋃

E∈A(E) is compact, hence closed, in 2X.)

In order to apply Lemma 4.2 to show that ⊥⊆ �2 is closed and ⊕ :⊥→ �

is continuous, we would like to have the canonical surjection p : E → � open.
The following condition is sufficient to secure this, plus the continuity of the
orthocomplementation ′ : � → �.
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Definition 4.2. Call a topological test space (X,A) is stably complemented iff
for any open set U in E , the set Uoc of events complementary to events in U is
again open.

Remarks 4.2. If H is a finite-dimensional Hilbert space, it can be shown
that the corresponding test space (S,F) of frames is stably complemented
(Wilce, appear).

Lemma 4.3. Let (X,A) be a topological test space, and let p : E → � be the
canonical quotient mapping (with � having the quotient topology). Then, the
following are equivalent:

(a) (X,A) is stably complemented.
(b) The mapping p : E → � is open and the mapping ′ : � → �

is continuous.

Proof: Suppose first that (X,A) is stably complemented, and let U be an open
set in E . Then

p−1(p(U)) = {A ∈ E |∃B ∈ UA ∼ B}
= {A ∈ E |∃C ∈ UocAocC}
= (

Uoc
)oc

which is open. Thus, p(U) is open. Now note that ′ : � → � is continuous iff,
for every open set V ⊆ �, the set V ′ = {p′|p ∈ V } is also open. But p−1(V ′) =
(p−1(V ))oc: since p is continuous and (X,A) is stably complemented, this last is
open. Hence, V ′ is open.

For the converse, note first that if ′ is continuous, it is also open (since a′′ = a

for all a ∈ �). Now for any open set U ⊆ E , Uoc = p−1(p(U)′): Since p and ′ are
continuous open mappings, this last is open as well. �

Proposition 4.1. Let (X,A) be a stably complemented algebraic test space with
E closed. Then, � is a topological orthoalgebra.

Proof: Continuity of ′ has already been established. We show first that ⊥⊆ �2

is closed. If (a, b) �∈⊥, then for all A ∈ p−1(a) and B ∈ p−1(b), (A,B) �∈⊥E . The
latter is closed, by Lemma 4.2 (a); hence, we can find Vietoris-open neighborhoods
U and V of A and B, respectively, with (U × V)∩ ⊥E= ∅. Since p is open, U :=
p(U) and V := p(V) are open neighborhoods of a and b with (U × V )∩ ⊥= ∅.
To establish the continuity of ⊕ :⊥→ �, let a ⊕ b = c and let A ∈ p−1(a), B ∈
p−1(B), and C ∈ p−1(c) be representative events. Note that A ⊥ B and A ∪ B =
C. Let W be an open set containing c: thenW := p−1(W ) is an open set containing
C. By Lemma 4.2 (b), ∪ :⊥E→ E is continuous; hence, we can find open sets U
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about A and V about B with A1 ∪ B1 ∈ W for every (A1, B1) ∈ (U × V)∩ ⊥E .
Now let U = p(U) and V = p(V): these are open neighborhoods of a and b, and
for every a1 ∈ U and b1 ∈ V with a1 ⊥ b1, a1 ⊕ b1 ∈ p(p−1(W )) = W (recalling
here that p is surjective). Thus, (U × V )∩ ⊥⊆ ⊕−1(W ), so ⊕ is continuous. �

5. SEMI-CLASSICAL TEST SPACES

From a purely combinatorial point of view, the simplest test spaces are those
in which distinct tests do not overlap. Such test spaces are said to be semi-classical.
In such a test space, the relation of perspectivity is the identity relation on proper
events; consequently, the logic of a semi-classical test space (X,A) is simply
the horizontal sum of the boolean algebras 2E , E ranging over A. A state on
a semi-classical test space (X,A) is simply an assignment to each E ∈ A of a
probability weight on E. (In particular, there is no obstruction to constructing
“hidden variables” models for states on such test spaces.)

Recent work of D. Meyer (1999) and of R. Clifton and A. Kent (2000) has
shown that the test space (S(H),F(H)) associated with a finite-dimensional Hilbert
space contains (in our language) a dense semi-classical sub-test space. To conclude
this paper, I will show that the this result in fact holds for a large and rather natural
class of topological test spaces.

Lemma 5.1. Let X be any Hausdorff (indeed, T1) space, and let U ⊆ X be a
dense open set. Then, (U ) = {F ∈ 2X|F ⊆ U} is a dense open set in 2X.

Proof: Since sets of the form 〈U1, . . . , Un〉, U1, . . . , Un open in X, form a basis
for the Vietoris topology on 2X, it will suffice to show that (U ) ∩ 〈U1, . . . , Un〉 �= 0
for all choices of non-empty opens U1, . . . , Un. Since U is dense, we can select for
each i = 1, . . . , n a point xi ∈ U ∩ Ui . The finite set F := {x1, . . . , xn} is closed
(since X is T1), and by construction lies in (U ) ∩ 〈U1, . . . , Un〉. �

Corollary 5.1. Let (X,A) be any topological test space with X having no isolated
points, and let E be any test in A. Then, the open set (Ec) = [E]c of tests disjoint
from E is dense in A.

Proof: Since E is a closed set, its complement Ec is an open set; since E is
discrete and includes no isolated point, Ec is dense. The result follows from the
preceding lemma. �

Theorem 5.1. Let (X,A) be a topological test space with X (and hence, A)
second countable, and without isolated points. Then, there exists a countable,
pairwise-disjoint sequence En ∈ A such that (i) {En} is dense in A, and (ii)

⋃
n En

is dense in X.
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Proof: Since it is second countable, A has a countable basis of open sets Wk ,
k ∈ N. Selecting an element Fk ∈ Wk for each k ∈ N, we obtain a countable dense
subset of A. We shall construct a countable dense pairwise-disjoint subsequence
{Ej } of {Fk}. Let E1 = F1. By Corollary 5.1, [E1]c is a dense open set; hence, it
has a non-empty intersection with W2. As {Fk} is dense, there exists an index k(2)
with E2 := Fk(2) ∈ W2 ∩ [E1]c. We now have E1 ∈ W1, E2 ∈ W2, and E1 ∩ E2 =
∅. Now proceed recursively: Since [E1]c ∩ [E2]c ∩ · · · ∩ [Ej ]c is a dense open
and Wj+1 is a non-empty open, they have a non-empty intersection; hence, we
can select Ej+1 = Fk(j+1) belonging to this intersection. This will give us a test
belonging to Wj+1 but disjoint from each of the pairwise disjoint sets E1, . . . , Ej .
Thus, we obtain a sequence Ej := Fk(j ) of pairwise disjoint tests, one of which
lies in each non-empty basic open set Wj —and which are, therefore, dense.

For the second assertion, it now suffices to notice that for each open set
U ⊆ X, [U ] is a non-empty open in A, and hence contains some Ej . But then
Ej ∩ U �= ∅, whence,

⋃
j Ej is dense in X. �
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